3q^2-80q+190=0

Simple and best practice solution for 3q^2-80q+190=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3q^2-80q+190=0 equation:


Simplifying
3q2 + -80q + 190 = 0

Reorder the terms:
190 + -80q + 3q2 = 0

Solving
190 + -80q + 3q2 = 0

Solving for variable 'q'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
63.33333333 + -26.66666667q + q2 = 0

Move the constant term to the right:

Add '-63.33333333' to each side of the equation.
63.33333333 + -26.66666667q + -63.33333333 + q2 = 0 + -63.33333333

Reorder the terms:
63.33333333 + -63.33333333 + -26.66666667q + q2 = 0 + -63.33333333

Combine like terms: 63.33333333 + -63.33333333 = 0.00000000
0.00000000 + -26.66666667q + q2 = 0 + -63.33333333
-26.66666667q + q2 = 0 + -63.33333333

Combine like terms: 0 + -63.33333333 = -63.33333333
-26.66666667q + q2 = -63.33333333

The q term is -26.66666667q.  Take half its coefficient (-13.33333334).
Square it (177.7777780) and add it to both sides.

Add '177.7777780' to each side of the equation.
-26.66666667q + 177.7777780 + q2 = -63.33333333 + 177.7777780

Reorder the terms:
177.7777780 + -26.66666667q + q2 = -63.33333333 + 177.7777780

Combine like terms: -63.33333333 + 177.7777780 = 114.44444467
177.7777780 + -26.66666667q + q2 = 114.44444467

Factor a perfect square on the left side:
(q + -13.33333334)(q + -13.33333334) = 114.44444467

Calculate the square root of the right side: 10.697871034

Break this problem into two subproblems by setting 
(q + -13.33333334) equal to 10.697871034 and -10.697871034.

Subproblem 1

q + -13.33333334 = 10.697871034 Simplifying q + -13.33333334 = 10.697871034 Reorder the terms: -13.33333334 + q = 10.697871034 Solving -13.33333334 + q = 10.697871034 Solving for variable 'q'. Move all terms containing q to the left, all other terms to the right. Add '13.33333334' to each side of the equation. -13.33333334 + 13.33333334 + q = 10.697871034 + 13.33333334 Combine like terms: -13.33333334 + 13.33333334 = 0.00000000 0.00000000 + q = 10.697871034 + 13.33333334 q = 10.697871034 + 13.33333334 Combine like terms: 10.697871034 + 13.33333334 = 24.031204374 q = 24.031204374 Simplifying q = 24.031204374

Subproblem 2

q + -13.33333334 = -10.697871034 Simplifying q + -13.33333334 = -10.697871034 Reorder the terms: -13.33333334 + q = -10.697871034 Solving -13.33333334 + q = -10.697871034 Solving for variable 'q'. Move all terms containing q to the left, all other terms to the right. Add '13.33333334' to each side of the equation. -13.33333334 + 13.33333334 + q = -10.697871034 + 13.33333334 Combine like terms: -13.33333334 + 13.33333334 = 0.00000000 0.00000000 + q = -10.697871034 + 13.33333334 q = -10.697871034 + 13.33333334 Combine like terms: -10.697871034 + 13.33333334 = 2.635462306 q = 2.635462306 Simplifying q = 2.635462306

Solution

The solution to the problem is based on the solutions from the subproblems. q = {24.031204374, 2.635462306}

See similar equations:

| -5u/8=-15 | | 3(5)-5=20-2(5) | | 7/5w=-21 | | -9f+8f= | | -3(t+9)= | | 6k-8-k=-7k-8 | | A^2+12a=12 | | -3(5a+4b+3c)= | | 3y+3-15=0 | | -10/3=-2y | | X-5/4=1/20 | | 7x-6x+x-4+4x= | | 7+3(2n-14)=1 | | 0.3x-0.18x+9= | | 7z+6.1+3.7z+2.7z+3= | | x+(1.5*x)=432000 | | 21(2x+8)=27x | | 19x^2+18=132 | | 5.3x+3.4-3x-8.9= | | -3x+5z=24 | | Log(7)343=x | | 10=2x+1y | | -3(2p-7)-4(5p-7)= | | (n+5)(6n-1)=0 | | 2x-y+3z=27 | | 18-4(x+4)=10(x+3)-10 | | 7x-12=93 | | log(8)(x^2-14)=log(8)(5x) | | (8x^3+9x^2-6)+(7x^3-9x+9)= | | 3x-2(6-x)=7 | | cos(9x)=0 | | 7x+12=93 |

Equations solver categories